Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
High Contrast Metastructures XI 2022 ; 12011, 2022.
Article in English | Scopus | ID: covidwho-1891710

ABSTRACT

The COVID-19 pandemic attributed to the SARs-Cov-2 virus has disrupted the lives of individuals in every corner of the world, causing millions of infections and numerous deaths worldwide. Identifying and isolating infected people is very crucial to slow down the spread of the disease. In this paper, we report a design of highly sensitive, graphene-metasurface based biosensor for detecting the S1 spike protein expressed on the surface of the SARSCoV-2 virus in the terahertz band. Our structure consists of a silicon dioxide substrate sandwiched between a complete gold layer at the bottom, and a graphene monolayer on top etched with a phi-shaped slot tilted at 45 degree, which performs a wideband reflective-type cross-polarization conversion of the incident electromagnetic (EM) wave. The optimized polarization conversion ratio (PCR) has been achieved at 0.75eV chemical potential value of the graphene layer. When samples of Sars-CoV-2 virus contained in a phosphate buffer saline (PBS) solvent is put on top of proposed design of the sensing surface, the spike proteins of the virus interact with the spike antibody grown on the sensing surface;and it changes the refractive index of the overall system (Biosensor + Analyte), which in turn changes the PCR and the corresponding frequency of the reflected wave. The biosensor response has been computed using the Finite Integration Technique (FIT) in the terahertz region. The sensitivity of the biosensor is found to be 354 GHz/RIU at the PCR of 0.9. © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

2.
IEEE Sensors Journal ; : 1-1, 2022.
Article in English | Scopus | ID: covidwho-1874326

ABSTRACT

We present the design and analysis of a graphene metasurface-based cross polarization converter operating within the terahertz gap for detecting biomolecules over a broad spectral range, taking the SARS-CoV-2 virus as a specific example. To the best of our knowledge, our design reports the widest band of operation in the THz region of a graphene-based metasensor. Each meta-atom comprises a graphene pattern on silicon dioxide atop a continuous gold layer and exhibits near-unity cross polarization conversion ratio (PCR) and a 90% PCR bandwidth of 0.926 THz within the desired band (1.88 THz-2.81 THz). The proposed device demonstrates additional benefits which include a thin configuration (λ/7.84) and compact lattice size (λ/10.66), which are significantly better than other recently reported graphene metasurface biosensors. The device provides a sensitivity up to 490 GHz/RIU and a figure of merit (FoM) of 0.377 over a wide span of 0.926 THz within the terahertz gap. The electromagnetic response of this device has been validated via rigorous numerical analyses of simulated outputs as well as by developing a detailed circuit model representation of the same. The device demonstrates angular stability of nearly 40°under oblique incidence of the incident wave. IEEE

SELECTION OF CITATIONS
SEARCH DETAIL